Agentic AI Development Methods and Key Points¶
What is Agentic AI?¶
Agentic AI represents a significant advancement from traditional single-response AI systems, enabling autonomous decision-making and continuous task execution. As of 2025, this field is rapidly evolving, providing innovative solutions for complex problem-solving, workflow automation, and advanced reasoning tasks.
Key Features¶
- Autonomy: Achieving goals with minimal human intervention
- Continuity: Long-term task execution and learning
- Adaptability: Dynamic behavior modification based on context
- Tool Integration: Integration with external systems and APIs
Agentic AI Design Patterns¶
1. Basic Design Patterns¶
Reflection Pattern¶
class ReflectiveAgent:
def __init__(self, llm, task_memory):
self.llm = llm
self.task_memory = task_memory
def execute_with_reflection(self, task):
# Initial execution
initial_result = self.execute_task(task)
# Self-evaluation
reflection_prompt = f"""
Task: {task}
Result: {initial_result}
Please self-evaluate on the following criteria:
1. Goal achievement level (1-10)
2. Areas for improvement
3. Learnings for next time
If improvements are possible, provide a revised solution.
"""
reflection = self.llm.generate(reflection_prompt)
# Re-execute if needed
if self.needs_improvement(reflection):
return self.execute_task(task, improvements=reflection)
return initial_result
Tool Use Pattern¶
class ToolEnabledAgent:
def __init__(self, llm, tools):
self.llm = llm
self.tools = {
'web_search': self.web_search,
'code_executor': self.execute_code,
'file_manager': self.manage_files,
'api_caller': self.call_api
}
def solve_with_tools(self, problem):
planning_prompt = f"""
Problem: {problem}
Available tools:
{list(self.tools.keys())}
Please plan the solution steps:
1. Identify required tools
2. Tool usage sequence
3. Expected results for each step
"""
plan = self.llm.generate(planning_prompt)
return self.execute_plan(plan)
Planning Pattern¶
class PlanningAgent:
def __init__(self, llm):
self.llm = llm
def create_dynamic_plan(self, goal, constraints):
planning_prompt = f"""
Goal: {goal}
Constraints: {constraints}
Create a detailed execution plan including:
1. Subtask decomposition
2. Dependency organization
3. Resource requirements
4. Risks and mitigation strategies
5. Success metrics
Output in JSON format.
"""
plan = self.llm.generate(planning_prompt)
return self.execute_adaptive_plan(plan)
def execute_adaptive_plan(self, plan):
for step in plan['steps']:
result = self.execute_step(step)
# Dynamic plan adjustment
if not self.is_step_successful(result):
updated_plan = self.replan(plan, step, result)
return self.execute_adaptive_plan(updated_plan)
return self.consolidate_results(plan)
Multi-Agent Collaboration Pattern¶
class AgentTeam:
def __init__(self):
self.agents = {
'analyst': AnalystAgent(),
'developer': DeveloperAgent(),
'tester': TesterAgent(),
'reviewer': ReviewerAgent()
}
def collaborative_development(self, requirements):
# Analysis phase
analysis = self.agents['analyst'].analyze(requirements)
# Development phase
code = self.agents['developer'].implement(analysis)
# Testing phase
test_results = self.agents['tester'].test(code)
# Review phase
review = self.agents['reviewer'].review(code, test_results)
# Collaborative improvement
if not review['approved']:
return self.iterative_improvement(requirements, review)
return code
2. Practical Architecture Patterns¶
Workflow Agent¶
class WorkflowAgent:
def __init__(self, workflow_definition):
self.workflow = workflow_definition
self.state = WorkflowState()
def execute_workflow(self, input_data):
current_step = self.workflow.get_entry_point()
while current_step:
# Execute step
step_result = self.execute_step(current_step, input_data)
# Update state
self.state.update(step_result)
# Determine next step
next_step = self.determine_next_step(
current_step,
step_result,
self.state
)
current_step = next_step
return self.state.get_final_result()
Hierarchical Agent¶
class HierarchicalAgent:
def __init__(self):
self.coordinator = CoordinatorAgent()
self.specialists = {
'data_processing': DataProcessingAgent(),
'analysis': AnalysisAgent(),
'reporting': ReportingAgent()
}
def solve_complex_problem(self, problem):
# Coordinator analyzes the problem
decomposition = self.coordinator.decompose_problem(problem)
# Delegate work to specialist agents
results = {}
for task in decomposition['tasks']:
specialist = self.specialists[task['type']]
results[task['id']] = specialist.execute(task)
# Integrate results
return self.coordinator.integrate_results(results)
Implementation Framework Comparison¶
LangGraph¶
from langgraph import StateGraph, END
def create_research_agent():
workflow = StateGraph(AgentState)
# Define nodes
workflow.add_node("researcher", research_node)
workflow.add_node("analyzer", analysis_node)
workflow.add_node("writer", writing_node)
# Define edges
workflow.add_edge("researcher", "analyzer")
workflow.add_conditional_edges(
"analyzer",
should_continue_research,
{
"continue": "researcher",
"write": "writer"
}
)
workflow.add_edge("writer", END)
# Entry point
workflow.set_entry_point("researcher")
return workflow.compile()
CrewAI¶
from crewai import Agent, Task, Crew
# Define agents
researcher = Agent(
role='Research Specialist',
goal='Conduct thorough research on given topics',
backstory='Expert researcher with strong analytical skills',
tools=[web_search_tool, document_analyzer]
)
writer = Agent(
role='Technical Writer',
goal='Create comprehensive documentation',
backstory='Experienced technical writer',
tools=[writing_assistant, grammar_checker]
)
# Define tasks
research_task = Task(
description='Research the latest trends in AI development',
agent=researcher
)
writing_task = Task(
description='Write a comprehensive report based on research',
agent=writer
)
# Create crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True
)
result = crew.kickoff()
IBM Bee Framework¶
from bee_agent_framework import Agent, LLMAdapter
# Agent configuration
agent = Agent({
"llm": LLMAdapter.fromModel(model),
"memory": memory_instance,
"tools": [calculator, web_browser, code_interpreter]
})
# Large-scale workflow execution
async def execute_enterprise_workflow():
result = await agent.run({
"prompt": "Analyze quarterly performance and generate insights",
"context": enterprise_context
})
return result
Memory Architecture Design¶
Short-term Memory (Working Memory)¶
class ShortTermMemory:
def __init__(self, capacity=10):
self.capacity = capacity
self.conversations = deque(maxlen=capacity)
self.current_context = {}
def add_interaction(self, user_input, agent_response):
self.conversations.append({
'timestamp': datetime.now(),
'input': user_input,
'response': agent_response,
'context': self.current_context.copy()
})
def get_recent_context(self, num_interactions=5):
recent = list(self.conversations)[-num_interactions:]
return self.format_context(recent)
Long-term Memory (Knowledge Base)¶
class LongTermMemory:
def __init__(self, vector_db, knowledge_graph):
self.vector_db = vector_db
self.knowledge_graph = knowledge_graph
self.episodic_memory = EpisodicMemory()
def store_experience(self, experience):
# Store in vector database
embedding = self.generate_embedding(experience)
self.vector_db.store(embedding, experience)
# Add relationships to knowledge graph
entities = self.extract_entities(experience)
self.knowledge_graph.add_relationships(entities)
# Store in episodic memory
self.episodic_memory.store(experience)
def retrieve_relevant_knowledge(self, query):
# Similarity search
similar_experiences = self.vector_db.similarity_search(query)
# Get related knowledge
related_knowledge = self.knowledge_graph.traverse(query)
return self.combine_knowledge(similar_experiences, related_knowledge)
Adaptive Learning Capability¶
class AdaptiveLearningAgent:
def __init__(self):
self.performance_tracker = PerformanceTracker()
self.strategy_optimizer = StrategyOptimizer()
def learn_from_feedback(self, task, result, feedback):
# Record performance
self.performance_tracker.record(task, result, feedback)
# Analyze learning patterns
patterns = self.analyze_performance_patterns()
# Adjust strategy
if patterns.indicates_improvement_needed():
new_strategy = self.strategy_optimizer.optimize(
current_strategy=self.current_strategy,
performance_data=patterns
)
self.update_strategy(new_strategy)
Practical Development Methods¶
1. Incremental Building Approach¶
class IncrementalAgentBuilder:
def __init__(self):
self.development_phases = [
"Basic Response Function",
"Tool Integration",
"Memory Function",
"Planning Capability",
"Self-Improvement"
]
def build_phase(self, phase_name):
if phase_name == "Basic Response Function":
return self.build_basic_responder()
elif phase_name == "Tool Integration":
return self.add_tool_capabilities()
# ... Implementation for each phase
def validate_phase(self, agent, test_cases):
success_rate = 0
for test_case in test_cases:
result = agent.execute(test_case)
if self.evaluate_result(result, test_case.expected):
success_rate += 1
return success_rate / len(test_cases)
2. Test-Driven Agent Development¶
class AgentTestSuite:
def __init__(self):
self.test_scenarios = []
def add_scenario(self, name, input_data, expected_behavior):
self.test_scenarios.append({
'name': name,
'input': input_data,
'expected': expected_behavior,
'evaluation_criteria': self.define_criteria(expected_behavior)
})
def run_tests(self, agent):
results = {}
for scenario in self.test_scenarios:
result = agent.execute(scenario['input'])
evaluation = self.evaluate_against_criteria(
result,
scenario['evaluation_criteria']
)
results[scenario['name']] = evaluation
return results
3. Monitoring and Debugging¶
class AgentMonitor:
def __init__(self):
self.metrics = AgentMetrics()
self.logger = StructuredLogger()
def monitor_execution(self, agent, task):
start_time = time.time()
try:
# Log pre-execution state
self.logger.log_state("pre_execution", agent.get_state())
# Execute task
result = agent.execute(task)
# Log post-execution state
self.logger.log_state("post_execution", agent.get_state())
# Update metrics
execution_time = time.time() - start_time
self.metrics.record_execution(task, result, execution_time)
return result
except Exception as e:
self.logger.log_error("execution_failed", str(e), agent.get_state())
raise
def generate_performance_report(self):
return {
'success_rate': self.metrics.get_success_rate(),
'average_execution_time': self.metrics.get_avg_execution_time(),
'error_patterns': self.metrics.get_error_patterns(),
'improvement_suggestions': self.analyze_performance()
}
Security and Governance¶
1. Secure Agent Design¶
class SecureAgent:
def __init__(self, security_config):
self.security_config = security_config
self.action_validator = ActionValidator()
self.access_controller = AccessController()
def execute_secure_action(self, action, context):
# Check access permissions
if not self.access_controller.has_permission(action, context.user):
raise UnauthorizedActionError()
# Validate action safety
if not self.action_validator.is_safe(action):
raise UnsafeActionError()
# Execute in sandbox environment
return self.execute_in_sandbox(action)
def execute_in_sandbox(self, action):
# Set resource limits
with ResourceLimiter(
cpu_limit=self.security_config.cpu_limit,
memory_limit=self.security_config.memory_limit,
network_access=self.security_config.network_access
):
return action.execute()
2. Governance Framework¶
class AgentGovernance:
def __init__(self):
self.policy_engine = PolicyEngine()
self.audit_logger = AuditLogger()
self.compliance_checker = ComplianceChecker()
def enforce_governance(self, agent, action):
# Apply policies
policy_result = self.policy_engine.evaluate(action)
if not policy_result.allowed:
self.audit_logger.log_policy_violation(action, policy_result.reason)
raise PolicyViolationError(policy_result.reason)
# Compliance check
compliance_result = self.compliance_checker.check(action)
if not compliance_result.compliant:
self.audit_logger.log_compliance_issue(action, compliance_result)
# Log execution
self.audit_logger.log_action_execution(agent.id, action)
return policy_result
Performance Optimization¶
1. Reasoning Efficiency Enhancement¶
class OptimizedReasoningAgent:
def __init__(self):
self.reasoning_cache = ReasoningCache()
self.pattern_matcher = PatternMatcher()
def optimized_reasoning(self, problem):
# Check cached reasoning results
cached_result = self.reasoning_cache.get(problem)
if cached_result:
return cached_result
# Fast resolution through pattern matching
pattern_match = self.pattern_matcher.find_similar(problem)
if pattern_match.confidence > 0.8:
result = self.adapt_solution(pattern_match.solution, problem)
else:
result = self.full_reasoning(problem)
# Cache the result
self.reasoning_cache.store(problem, result)
return result
2. Resource Management¶
class ResourceManager:
def __init__(self):
self.resource_pool = ResourcePool()
self.scheduler = TaskScheduler()
def optimize_resource_usage(self, agents, tasks):
# Predict resource usage
resource_predictions = self.predict_resource_usage(agents, tasks)
# Optimize task scheduling
optimal_schedule = self.scheduler.optimize(
tasks,
resource_predictions,
self.resource_pool.available_resources()
)
return optimal_schedule
Future Prospects and Challenges¶
Technical Challenges¶
- Scalability: Efficient operation in large-scale systems
- Consistency: Maintaining behavioral consistency over long periods
- Explainability: Transparency in decision-making processes
- Safety: Prevention of unexpected behaviors
Future Development Directions¶
- Autonomous Tool Creation: Automatic generation of new tools as needed
- Cross-modal Learning: Integrated processing of text, images, and audio
- Real-time Adaptation: Immediate response to environmental changes
- Human-AI Collaboration: More natural cooperation with humans
Summary¶
Agentic AI development offers new possibilities beyond traditional AI applications. Key success factors include:
- Start Simple: Implement basic functions reliably before complex systems
- Build Incrementally: Add features gradually, testing and validating at each stage
- Observability: Constantly monitor and record system behavior
- Security First: Design with security considerations from the beginning
- User-Centric: Focus on solving real problems rather than technical possibilities
When properly designed and implemented, Agentic AI becomes a powerful tool that augments human creativity and supports complex problem-solving.